Abstract

Abstract The semiconductor industry is committed to introducing copper interconnects in place of aluminum for the latest generation of semiconductor devices. With its greater current carrying capacity, the use of copper should enable further reductions in device geometry, power consumption and heat generation, and lead to higher performance and longer battery life in portable devices. Grain orientations, crystal log raphic ‘texture’ trends and boundary types are crucial in determining properties such as electrical resistively, strength and corrosion resistance. These parameters may be implicated both in the performance of the device and in failure mechanisms, which are of great importance in determining reliability. Our work demonstrates that high-resolution electron backscatter diffraction (EBSD) is now both possible and routinely achievable using both hot and cold field emission gun scanning electron microscopes (FEGSEMs). Our results demonstrate that EBSD can be successfully used to map grain orientation and to reveal and classify grain boundaries for this application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call