Abstract
Simple, yet predictive bonding models are essential achievements of chemistry. In the solid state, in particular, they often appear in the form of visual bonding indicators. Because the latter require the crystal orbitals to be constructed from local basis sets, the application of the most popular density-functional theory codes (namely, those based on plane waves and pseudopotentials) appears as being ill-fitted to retrieve the chemical bonding information. In this paper, we describe a way to re-extract Hamilton-weighted populations from plane-wave electronic-structure calculations to develop a tool analogous to the familiar crystal orbital Hamilton population (COHP) method. We derive the new technique, dubbed "projected COHP" (pCOHP), and demonstrate its viability using examples of covalent, ionic, and metallic crystals (diamond, GaAs, CsCl, and Na). For the first time, this chemical bonding information is directly extracted from the results of plane-wave calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.