Abstract

The Classical Nucleation Theory (CNT) has played a key role in crystal nucleation studies since the 19th century and has significantly advanced the understanding of nucleation. However, certain key assumptions of CNT, such as a compact and spherical nucleating cluster and the concept of individual diffusive jumps are questionable. The results of molecular dynamics (MD) studies of crystal nucleation in a Al20Ni60Zr20 metallic liquid demonstrate that the nucleating cluster is neither spherical nor compact. The seeding method was employed to determine the critical cluster size and nucleation parameters from CNT, which were then compared to those derived from the Mean First Passage Time (MFPT) method. While the CNT-based nucleation rate aligns well with experimental data from similar metallic liquids, the MFPT rate differs significantly. Further, contrary to the assumption of individual jumps for atoms to join the nucleating cluster, a cooperative mechanism of attachment or detachment is observed. This is accompanied by synchronized changes in the local potential energy. Similar cooperative motion also appeared in a non-classical nucleation process, particularly during the coalescence of nuclei.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call