Abstract

The glass formation ability of an alloy depends on two competing processes: glass-transition, on one hand, and crystal nucleation and growth, on the other hand. While these phenomena have been widely studied before in nearly equiatomic Cu-Zr alloys, studies are lacking for solute/solvent-rich ones. In the present work, molecular dynamics simulations show that the addition of a small amount of Zr (1-10 at. %) to Cu drastically increases the incubation time and slows down crystal growth, thus, leading to an improved glass forming ability. The crystal nucleation and growth processes of a competing face-centered cubic (FCC) Cu crystalline phase are analyzed in detail. In particular, the values of the critical cooling rate, incubation period for crystallization, and growth rate of FCC Cu crystals in these Cu-rich alloys are obtained. The growth of a supersaturated FCC Cu solid solution is found to be polymorphic at the interface (except for alloys with 9 and 10 at. % Zr) though a Zr concentration gradient is observed within growing crystals at high enough Zr content. The crystal growth rate before crystal impingement is nearly constant in all alloys, though it decreases exponentially with the Zr content. Crystallization kinetics are also analyzed within the existing theories and compared with the experimental values available in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call