Abstract

A three-dimensional (3D) metal-organic framework [Ag(pL2)(CF3SO3)]·2C6H6 (pL2 = 1,3,5-tris(4-cyanophenylethynyl)benzene), composed of Ag+ and tripodal nitrile ligands, was prepared to enable the investigation of its crystal melting and vitrification behaviors. The guest-free state showed a crystal melting at 271 °C, and the liquid state transformed into a glassy state via cooling. The vitrification of the crystalline compound into an amorphous glassy state was also obtained by mechanical hand-grinding. The structure of the glassy state retained the 3D networked structure, confirmed by FT-IR, X-ray absorption, and scattering measurements. The mechanically induced glass showed a small uptake of CO2 and a strong affinity for benzene and H2O vapors, confirmed by gas sorption isotherms. Powder X-ray diffraction studies have revealed that the vitrified structure returned to the original 3D crystalline structure by exposure to these vapors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.