Abstract

X-ray diffraction has been used to study shape-memory alloys of composition Ti-(49.73–51.05 at %) Ni subjected to quenching and thermomechanical treatment (TMT) by the scheme “cold deformation (e = 0.3–1.9) + postdeformation annealing (200–500°C) to provide different defectness of the parent B2 austenite. For the quenched alloys, the concentration dependences of the lattice parameters of the B19′ martensite, maximum lattice strain upon martensitic transformation, the crystallographic orientation of the lattice in single crystals, and the reserve of recoverable strain in polycrystals have been determined. The lattice parameters of martensite formed from polygonized, i.e., nanosubgranular, or from nanocrystalline austenite differ from the corresponding parameters of quenched martensite formed from recrystallized austenite, and their difference increases with increasing defectness of the parent-austenite lattice. An increase in the defectness of the austenite lattice is accompanied by a decrease in the reserve of recoverable strain. The deformation of the existing martensite or the formation of stress-assisted martensite under the anisotropic action of external stresses changes the interplanar spacing and the thermal expansion coefficient in different crystallographic directions but does not affect the averaged lattice parameters near the M s-M f interval and the reserve of recoverable strain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.