Abstract

Epitaxial liftoff has been used for achieving heterogeneous integration of many III-V and elemental semiconductor systems. However, it has been heretofore impossible to integrate devices of many other important material systems. A good example of this problem has been the integration of single-crystal transition metal oxides on semiconductor platforms, a system needed for on-chip thin film optical isolators. We report here an implementation of epitaxial liftoff in magnetic garnets. Deep ion implantation is used to create a buried sacrificial layer in single-crystal yttrium iron garnet (YIG) and bismuth-substituted YIG (Bi-YIG) epitaxial layers grown on gadolinium gallium garnet (GGG). The damage generated by the implantation induces a large etch selectivity between the sacrificial layer and the rest of the garnet. Ten-micron-thick films have been lifted off from the original GGG substrates by etching in phosphoric acid. Millimeter-size pieces of excellent quality have been transferred to the silicon and gallium arsenide substrates. Study of the magnetic domain structure in the detached epilayers by Faraday contrast shows no changes in film anisotropy. Optical insertion loss measurements are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.