Abstract

In Nicotiana tabacum, the degeneration of connective tissue and stomium tissue (the stomium and circular cell cluster [CCC]) is essential for anther dehiscence. Both connective cells and CCC cells are crystal idioblasts, and these cells will undergo degeneration after accumulating calcium oxalate (CaOx) crystals. However, detailed data concerning this process are minimal. Therefore, this study used cellular biological and physiological methods to illustrate this relationship. Results demonstrated that tobacco anther dehiscence is a series of timed programmed cell death (PCD) processes that include the CCC, connective tissue, and stomium. The degenerating crystal idioblasts of the tobacco anther were found to possess two hallmark characteristics that distinguished them from normal PCD cells, namely dynamic changes in CaOx crystals and the appearance of numerous peroxisomes. The accumulation of CaOx and the production of H2 O2 occurred simultaneously or successively before PCD. The peak H2 O2 content was found to appear after the insoluble oxalate. Further, CeCl3 cytochemistry staining was used to detect subcellular H2 O2 , and the precipitate of H2 O2 was primarily present in peroxisomes and around CaOx crystals. These results show that anther dehiscence in N. tabacum is a PCD process in which crystal idioblasts play a vital role in CaOx degradation and H2 O2 production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.