Abstract

It has been established empirically that the rate of addition of molecules to the crystal during crystal growth from the melt is proportional to exp(-|ΔSfus|/R), where ΔSfus is the entropy of fusion. Here we show that this entropic slowdown arises directly from the separation of the entropy loss and energy loss processes associated with the freezing of the liquid. We present a theoretical treatment of the kinetics based on a model flat energy landscape and derive an explicit expression for the coupling magnitude in terms of the crystal-melt interfacial free energy. The implications of our work for nucleation kinetics are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.