Abstract
A Li2Zn2(MoO4)3 (LZMO) single crystal was grown by the flux method under the condition of a low temperature-gradient. The obtained crystal has a single-phase confirmed by a powder X-ray diffraction study. Luminescence properties of the crystal have been studied from room to cryogenic (300–6 K) temperatures under excitation by a 280 nm light-emitting diode (LED). At 6 K, the grown crystal exhibits an intrinsic emission band with emission wavelength ranges from 400 to 900 nm, and the maximum peak at ~612 nm. From 6 to 280 K, the luminescence decay time of the crystal was studied using the 280 nm LED. The decay times for the entire temperature range were fitted with two exponential decay functions. The temperature-dependent (300–10 K) scintillation light yield was studied under the excitation of a 90Sr (beta) radioactive source. We compared scintillation and luminescence light yields of the LZMO with a reference CaMoO4 crystal. Thermoluminescence study of the crystal was carried out from 9 to 300 K and different kinematic parameters such as activation energy and frequency factor have been calculated. From this study, it shows that the LZMO crystal has potential as detector material in experiments searching for neutrinoless double-beta decay of 100Mo at cryogenic temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.