Abstract

A monolayer of dodecanethiol-stabilized gold nanoparticles changed into two-dimensional and three-dimensional self-organized structures by annealing at 323 K. Subsequent crystal growth of gold nanoparticles occurred. Thiol molecules, although chemisorbed, form relatively unstable bonds with the gold surface; a few thiols desorbed from the surface and oxidized to disulfides at 323 K, because the interaction energy between thiol macromolecules is larger than that between a thiol and a nanoparticle. The gold nanoparticles approached each other and grew into large single or twinned crystals because of the van der Waals attraction and the heat generated by the exothermic formation of disulfides.

Highlights

  • Self-organization of nanocrystals has been reported during the past decade

  • Despite the large volume of literature relating to synthesis, morphological development, assembling, and demonstrated applications of thiol-stabilized gold (Au) nanoparticles, only a few studies exist on further structural development such as low-temperature coalescence and grain growth based on self-organized structures

  • We have devised a method for growing selforganized gold nanoparticles at relatively low temperature (323 K)

Read more

Summary

Introduction

Self-organization of nanocrystals has been reported during the past decade. The first two-dimensional (2D) and threedimensional (3D) superlattices were observed with Ag2S and CdSe nanocrystals, respectively [1,2,3,4]. Abstract A monolayer of dodecanethiol-stabilized gold nanoparticles changed into two-dimensional and threedimensional self-organized structures by annealing at 323 K. Despite the large volume of literature relating to synthesis, morphological development, assembling, and demonstrated applications of thiol-stabilized gold (Au) nanoparticles, only a few studies exist on further structural development such as low-temperature coalescence and grain growth based on self-organized structures.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.