Abstract

Silver nanoribbons and nanoplates have been synthesized by the classical silver-mirror reaction by changing the reaction conditions at room temperature. It was found that the reaction time and [ammonia] were an important factor for the growth of nanoparticles having different morphologies. Silver nanoplates and nanoribbons can be achieved in high yield by adjusting the reaction time and ammonia content, respectively. The formation rate of silver nanoparticles was investigated by UV–visible spectroscopy. Transmission electron microscopy (TEM) and selected areas electron diffraction (SAED) have been employed to characterize the resulting nanoplates and nanoribbons. Ostwald ripening process was observed which caused fusion among growing small spheres silver nanoparticles leads to the formation of nanoribbons at lower [ammonia].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call