Abstract

Alloying of CdZnTe (CZT) with selenium has been found to be very promising and effective in reducing the overall concentration of secondary phases (Te precipitates/inclusions) and sub-grain boundary networks in the crystals. These two types of defects are the main causes for incomplete charge collection, and hence they affect the yield of high-quality CZT, resulting in a very high cost for large-volume, high-quality detector-grade CZT detectors. The addition of selenium was also found to very effective in increasing the compositional homogeneity along the growth direction of the CdZnTeSe (CZTS) ingots grown by the traveling heater method (THM) technique. The compositional homogeneity along the growth direction can enhance the overall yield of detector-grade CZTS, which should therefore be possible to produce at a lower cost compared to CZT. The electrical properties and detector performance of the CZTS crystals will be presented and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call