Abstract
Identifying the most appropriate polymorph of active pharmaceutical ingredients is one of the important steps in drug development, since their bioactivities are largely dependent on their solid forms. However, the sample preparation for the characterization of crystal forms is time-consuming and requires large quantities of sample. Here, we introduce a microfluidic device-based method to prepare a sub-millimeter-sized single aspirin crystal from a small quantity of material. For the crystal preparation, a device equipped with a solution flow system and temperature controller was placed under the microscope. To use the device, concentration–temperature phase diagrams were generated, and regions where dominant nucleation or crystal growth with specific directions were clearly determined. By observing time-dependent changes of crystal number and size with solution temperature, a pathway to grow a single crystal of aspirin was determined and applied to prepare a sub-millimeter-sized crystal from 250 μg of aspirin. The obtained crystal was sufficiently large for single-crystal X-ray diffraction analysis, which usually requires 10 mg to 1 g of material per crystallization experiment. Thus, this method can be adapted as an efficient approach to uncovering the crystallization process to obtain required crystal forms with minimal sample consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.