Abstract

A series of zirconium sulphoselenide (ZrS x Se3−x , where x = 0, 0·5, 1, 1·5, 2, 2·5, 3) single crystals have been grown by chemical vapour transport technique using iodine as a transporting agent. The optimum condition for the growth of these crystals is given. The stoichiometry of the grown crystals were confirmed on the basis of energy dispersive analysis by X-ray (EDAX) and the structural characterization was accomplished by X-ray diffraction (XRD) studies. The crystals are found to possess monoclinic structure. The lattice parameters, volume, particle size and X-ray density have been carried out for these crystals. The effect of sulphur proportion on the lattice parameter, unit cell volume and X-ray density in the series of ZrS x Se3−x single crystals have been studied and found to decrease in all these parameters with rise in sulphur proportion. The grown crystals were examined under optical zoom microscope for their surface topography study. Hall effect measurements were carried out on grown crystals at room temperature. The negative value of Hall coefficient implies that these crystals are n-type in nature. The conductivity is found to decrease with increase of sulphur content in the ZrS x Se3−x series. The electrical resistivity parallel to c-axis as well as perpendicular to c-axis have been carried out in the temperature range 303–423 K. The results obtained are discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call