Abstract

The single crystals of CsI-Yb2+ were grown, and their spectroscopic studies were conducted. The observed luminescence in CsI-Yb2+ is due to 5d–4f transitions in Yb2+ ions. Using time-resolved spectroscopy, spin-allowed and spin-forbidden radiative transitions of ytterbium ions at room temperature were found. The excitation spectra of Yb2+ luminescence bands were obtained in the range of 3–45 eV. The mechanism of charge compensation of Yb2+ ions in a CsI crystal was also studied, the spectrum of the thermally stimulated depolarization current was measured, and the activation energies of the two observed peaks were calculated. These peaks belong to impurity–vacancy complexes in two different positions. The charge compensation of Yb2+ occurs via cation vacancies in the nearest-neighbor and next-nearest-neighbor positions.The Yb2+ ions are promising dopants for CsI scintillators and X-ray phosphors in combination with SiPM photodetectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.