Abstract
With the growing demand for low-temperature technologies, magnetic refrigeration, which is based on magnetocaloric effect (MCE) of magnetic materials, has attracted increasing attention. In this work, Li9Fe3(P2O7)3(PO4)2 (LFPP) crystals have been grown by the high-temperature flux method. The crystal structural characterization is analyzed, and its magnetocaloric effect (MCE) is in detail investigated for the first time. The maximum magnetic entropy changes (−ΔSM) of LFPP under a field change of 0–7 T are determined to be 4.6 J/kg·K (H⊥c) and 4.1 J/kg·K (H//c) at 4 K and 5 K, respectively. The slow decrease of −ΔSM around the phase transition temperature implies that LFPP has a large refrigeration temperature range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.