Abstract

Three growth methods were tested for producing high-transition temperature superconducting Bi2Sr2Can–1CunO2n+4+δ whiskers, employing different ways to focus a compressive stress and size effect of the precursors. First, thermographic imaging was used to investigate thermal stress from temperature distribution in the precursors during growth annealing. To enhance thermal stress in the precursors, a thermal cycling method and a Ag-paste coating method were proposed and found to significantly accelerate the whisker growth. The use of pulverized precursors also promoted whisker growth, possibly due to contribution from the vapor–liquid–solid growth mechanism. The obtained whiskers revealed the typical composition, diffraction patterns, and superconducting properties of the Bi-2212 phase. The proposed methods were able to stably produce longer whiskers compared to the conventional method. Using the obtained whiskers, electrical transport measurements under high pressure were successfully performed up to around 50 GPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call