Abstract
Cd1−xMnxTe (x=0.1, 0.3, 0.5, 0.7 and 0.9) (CMT) single crystals were grown by the vertical Bridgman method. The optical studies reveal that with the increase in Mn concentration, the band gap values increase, which is attributed to s, p–d exchange interaction between the band carriers and Mn ions. Faraday rotation angle of the grown CMT (x=0.5) crystals were measured at the following wavelengths: 825, 1060 and 1575nm. It was inferred that CMT exhibit larger Faraday effect (3–6 times larger than terbium–gallium garnet (TGG) currently used for optical isolators) making it as an efficient material for optical isolator at longer wavelengths. Field-cooled and zero field-cooled magnetizations of CMT were measured as a function of temperature and magnetic field. The spin-glass like behavior of CMT and their tendency to decrease in magnitude with increasing Mn concentration have been analyzed. The metal contacts on the Cd1−xMnxTe (x=0.1, 0.5, 0.7 and 0.9) crystals have been made with various metals and metal alloys to establish the ohmic contact. The detector characteristics of CMT have been tested using γ-rays with 511keV (22Na) and 59.5keV (241Am).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.