Abstract

AbstractFractional crystallization is an essential process proposed to explain worldwide compositional abundances of igneous rocks. It requires crystals to precipitate from the melt and segregate from its residual melt, or experience crystal fractionation. The compositional abundances of volcanic systems show a bell curve distribution suggesting that the process has variable efficiencies. We test crystal fractionation efficiency in convective flow in low to intermediate crystallinity regime. We simulate the physical segregation of crystals from their residual melt at the scale of individual crystals, using a direct numerical method. We find that at low particle Reynolds numbers, crystals sink in clusters. The relatively rapid motion of clusters strips away residual melt. Our results show cluster settling can imprint observational signatures at the crystalline scale. The collective crystal behavior results in a crystal convection that governs the efficiency of crystal fractionation, providing a possible explanation for the bell curve distribution in volcanic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.