Abstract

Bi(Er3+-Yb3+)VO4 fibers prepared by the iterative electrospinning process have excellent crystal filament compatibility. Compared with traditional photocatalytic materials, fibers in our work are admirable in some aspects including large specific surface area, strong three-dimensional weaving capacity, high solar energy utilization rate, high reproducibility, and controllable structure. The working temperature of the catalytic degradation process is monitored and fed back in real time by 2H11/2 →4I15/2 and 4S3/2 →4I15/2 radiation transitions of Er3+ with excellent sensitivity. Photocatalytic efficiency is greatly improved by broadening the photoresponse range of BiVO4 and inhibiting the recombination of photo-generated charges, which is attributable to the successful incorporation of rare earth ions. The maximum degradation efficiency of methylene blue (MB) is 98.7% and the degradation constant K is as high as 0.116 min−1 under simulated sun-light irradiation and it also has the same degradation trend under near-infrared (NIR) light irradiation. In general, highly efficient catalytic fibers with sensitive temperature feedback performance provide a new perspective for the application of multifunctional photocatalytic materials in extremely harsh environments to address pressing energy and environmental challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.