Abstract

We report on crystal-field engineering of solid-state laser gain media based on new transition metal (TM) (iron) doped II-VI ternary and quaternary semiconductor materials for middle-infrared (mid-IR) tunable laser applications. Novel ternary and quaternary TM:II-VI materials were fabricated in powder form using thermal annealing of mixtures of commercially available binary powders sealed in evacuated quartz ampoules. These resultant powders were characterized using XRD, micro-Raman spectroscopy, photoluminescence (PL) and PL kinetics. We demonstrate: 1) that this synthesis method enables laser active powder media and is an effective means to fabricate and prototype novel laser active materials, 2) by introducing heavier or lighter ions into the host crystal lattice, it is possible to independently engineer the spectral positions of the absorption and PL band of TM ions in II-VI crystals, and 3) the first time to our knowledge room temperature, mirrorless, random lasing of iron doped Zn0.5Cd0.5Te powders at 5.9 μm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.