Abstract
Changes in the shape of X-ray photoemission (XPS) spectra can be related to changes in the local structure of a transition metal. By combining Crystal Field Multiplet calculations and well-controlled molecular beam epitaxy growth of α-Cr2O3(0001) thin films on α-Al2O3(0001) substrates, we prove that it is possible to link the features of Cr 2p XPS spectra with local distortions of CrO6 octahedra and d-orbitals reorganization. Hence, we show that the splitting of the Cr 2p3/2 envelope is related to the degeneracy of the t2g orbital triplet, which corresponds to a fully relaxed structure. Conversely, the broad unstructured Cr 2p3/2 envelope relies on splitting of t2g orbitals and it is the fingerprint of large trigonal distortions of CrO6 octahedra. Then, using the Cr 2p XPS as a structural tool for α-Cr2O3, we show that the Cr2O3 protective layer formed by oxidation of polycrystalline Ni30Cr alloy exhibits in-plane strains at early oxidation stages and grows preferentially along the c-axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.