Abstract
Crystal engineering can be regarded as the highly ordered and complicated supramolecular synthesis of functional crystalline solids by control of intermolecular interactions. As one of the most important organic solids for crystal engineering, organic optoelectronic materials have received tremendous interest in the past several decades. In this review, we discuss systematically how to design organic optoelectronic materials from the perspective of crystal engineering including molecular structures, intermolecular interactions, packing arrangements, crystal growth, and patterning methods as well as two-component and multi-component molecular materials. We underline the correlations among molecular structures, packing modes, crystal morphologies, and optoelectronic properties. Finally, we address several key points for further exploration in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.