Abstract

Co-crystallization is a phenomenon widely employed to enhance the physio-chemical and biological properties of active pharmaceutical ingredients (APIs). Exemestane, or 6-methyl-ideneandrosta-1,4-diene-3,17-dione, is an anabolic steroid used as an irreversible steroidal aromatase inhibitor, which is in clinical use to treat breast cancer. The present study deals with the synthesis of co-crystals of exemestane with thio-urea by liquid-assisted grinding. The purity and homogeneity of the exemestane-thio-urea (1:1) co-crystal were confirmed by single-crystal X-ray diffraction followed by thermal stability analysis on the basis of differential scanning calorimetry and thermogravimetric analysis. Detailed geometric analysis of the co-crystal demonstrated that a 1:1 co-crystal stoichiometry is sustained by N-H⋯O hydrogen bonding between the amine (NH2) groups of thio-urea and the carbonyl group of exemestane. The synthesized co-crystal exhibited potent urease inhibition activity in vitro (IC50 = 3.86 ± 0.31 µg ml-1) compared with the API (exemestane), which was found to be inactive, and the co-former (thio-urea) (IC50 = 21.0 ± 1.25 µg ml-1), which is also an established tested standard for urease inhibition assays in vitro. The promising results of the present study highlight the significance of co-crystallization as a crystal engineering tool to improve the efficacy of pharmaceutical ingredients. Furthermore, the role of various hydrogen bonds in the crystal stability is successfully analysed quantitatively using Hirshfeld surface analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.