Abstract

Here, a barbituric acid derivative containing pyrene rings (DPPT) was successfully synthesized, and two types of crystals were prepared by using crystal engineering methods. Orange sheet-like crystals (DPPT-O, observed in visible light), prepared in a DCM/CH3OH solution, exhibited brittleness and weak fluorescence emission, along with sunlight-induced bending and fracturing. Red needle-like crystals (DPPT-R, also observed in visible light), synthesized in a DCM/CH3CN solution, demonstrated elastic properties, strong fluorescence emission, and excellent optical waveguide performance (with an optical loss coefficient of 0.23-0.30 dB mm-1). Single-crystal data analysis revealed that the stacking arrangement of molecules critically influenced the elasticity of the crystals, while the reaction cavity size regulated the photomechanical properties of the crystals. This study achieved effective control over sunlight responsiveness and flexible optical waveguide transmission for the first time, providing innovative insights for the application of homogeneous organic polycrystalline molecular crystals in this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.