Abstract

AbstractMerrillite is a ubiquitous accessory phase in a variety of Martian meteorite lithologies. The Martian merrillites exhibit a positive correlation between Mg# and Na and a negative correlation between Mg# and both Mn and vacancies in the octahedral Na‐site. Their REE patterns are varied and range from LREE‐depleted to LREE‐enriched. The dominant cation substitutions in the Martian merrillites are Fe2+VI Mg‐site⇔Mg2+VI Mg‐site and Ca2+VI Na‐site + □VI Na‐site⇔2Na+VI Na‐site. The REE substitution into the 8‐fold coordinated Ca‐site is accommodated by the coupled substitution CaVIII Ca‐site + (Na)VI Na‐site ⇔(Y3+ + REE3+)VIII Ca‐site + □VI Na‐site. The REE substitution is significantly more prevalent in lunar merrillite and can be used as a “fingerprint” to distinguish lunar from Martian meteorites. The substitution of OH− (whitlockite) and/or F− (bobdownsite) for O2− on one of the phosphate tetrahedrons appears to be rather insignificant. The correlations among Na, Mg#, Mn, and Na‐site vacancies are linked to the premerrillite crystallization history of the melt and the crystal chemical behavior of the Mg‐ and Na‐sites. The former reflects the sequence and extent of plagioclase and pyroxene crystallization. The differences in REE pattern shapes among the merrillites reflect source regions for the Martian basalts and the shapes are not greatly perturbed by the crystallization history. The occurrence of merrillite does not imply low‐volatile component in the Martian magmas. However, the low whitlockite and bobdownsite contents suggest that these samples were not altered by hydrothermal fluids and therefore not reset owing to aqueous fluid interactions. Consequently, the young ages of the shergottites are probably true igneous crystallization ages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.