Abstract

The crystal and molecular structures of the phosphinomethyl-substituted lithium cyclopentadienides [Li(tmeda)][R2PCMe2C5H4], R = Ph (1), Me (2) (tmeda = N,N,N',N'-tetramethylethylenediamine) were determined as their tmeda adducts on the basis of low temperature single crystal X-ray diffraction. (Crystal data: 1: monoclinic, space group P21/n, a = 8.511(5), b = 11.936(2), c = 24.20(1) Å, β = 90.02(3)°, Z = 4.2: monoclinic, space group P21/n, a = 10.887(2), b = 13.326(2), c = 13.131(2) Å, β= 92.872(6)°, Z = 4). In both compounds lithium has a slightly distorted 17 coordination to the cyclopentadienide (Cp) ring. There are no interactions between lithium and the phosphine donors in the solid state as the phosphinomethyl substituents are oriented to the other side of the Cp ring for steric reasons. The isopropene-substituted lithium cyclopentadienide, which is formed as a by-product in the synthesis of phosphinomethyl cyclopentadienides containing a CMe2 bridge, was also structurally characterized as its tmeda adduct [Li(tmeda)][H2C=CMeC5H4] (3). (Crystal data: monoclinic, P21/c, a = 8.00(2), b = 16.701(2), c = 11.942(6) Å, β= 112.68(7)°, Z = 4). As in 1 and 2, lithium is η5 -coordinated to the Cp ring, and there is no interaction of the functional group (isopropene) with lithium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.