Abstract

A new pyroxene compound, NaMnGe(2)O(6), has been synthesized at 3 GPa and 800 °C and fully characterized by X-ray single-crystal diffraction, neutron powder diffraction, and measurements of magnetization and specific heat. NaMnGe(2)O(6) crystallizes into a monoclinic C2/c structure with unit-cell parameters a = 9.859(2) Å, b = 8.7507(18) Å, c = 5.5724(11) Å, and β = 105.64(3)° at 153 K. A cooperative Jahn-Teller distortion is formed by an ordering of the longest Mn-O bonds between two neighboring octahedra along the chain direction. This feature distinguishes NaMnGe(2)O(6) from other pyroxene compounds without Jahn-Teller active cations and suggests that the Jahn-Teller distortion competes with the intrinsic local distortion in the pyroxene structure. No orbital order-disorder transition has been found up to 750 K. Like other alkali-metal pyroxenes with S > (1)/(2), NaMnGe(2)O(6) (S = 2) was found to undergo a long-range antiferromagnetic (AF) ordering at T(N) = 7 K due to intrachain and interchain exchange interactions. Due to the peculiar structural features and the corresponding magnetic coupling, the weak AF spin ordering gives way to a ferromagnetic-like state at a sufficiently high magnetic field. Specific-heat measurements demonstrated that a large portion of the magnetic entropy, >60%, has been removed above T(N) as a result of strong spin correlations within the quasi-one-dimensional Mn(3+)-spin chains. The Reitveld refinement of neutron powder diffraction data gives a commensurate magnetic structure defined by k = [0 0 0.5] with Mn moments aligned mainly along the c-axis with a small component along both a- and b-axes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call