Abstract

The spectral properties of three-dimensional dust clusters confined in gaseous discharges are investigated using both a fluid mode description and the normal mode analysis (NMA). The modes are analysed for crystalline clusters as well as for laser-heated fluid-like clusters. It is shown that even for clusters with low particle numbers and under presence of damping fluid modes can be identified. Laser-heating leads to the excitation of several, mainly transverse, modes. The mode frequencies are found to be nearly independent of the coupling parameter and support the predictions of the underlying theory. The NMA and the fluid mode spectra demonstrate that the wakefield attraction is present for the experimentally observed Yukawa balls at low pressure. Both methods complement each other, since NMA is more suitable for crystalline clusters, whereas the fluid modes allow to explore even fluid-like dust clouds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.