Abstract

Zr12Pd40Ga31 was prepared from the elements by arc melting under argon and subsequent annealing at 870 K for 720 h. Single-crystal X-ray diffraction reveals that Zr12Pd40Ga31 crystallizes in a new hexagonal structure type: Pearson symbol (PS) hP166, space group P6/mmm, a = 18.7670(6) Ǻ, c = 8.6634(6) Ǻ). The crystal structure consists of three types of atomic layers – two flat sheets at z = 0 (layer A) and z = 0.5 (C) and one corrugated at z = 0.25 and z = 0.75 (B), which stack in the sequence … ABCB … along the [001] direction. The structure shows close vicinity to a series of hexagonal structures with PS hP164–hP171. These compounds show peculiar structural variability expressed in the different atomic occupations of the Wyckoff positions along and around the 3-fold and 6-fold axes. Homogeneity range and lattice parameters of new ternary compound Zr12Pd40−xGa31+y (x = 0–1.5, y = 0–0.5) have been refined from EDX and powder XRD data. Electronic structure calculations and bonding analysis have been performed for an idealized model revealing domination of the Pd–Ga and Ga–Ga interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call