Abstract

Cryptosporidium parvum is an intracellular protozoan parasite that causes a severe diarrheal illness in humans and animals. Previous ultrastructural studies have shown that Cryptosporidium resides in a unique intracellular compartment in the apical region of the host cell. The mechanisms by which Cryptosporidium invades host intestinal epithelial cells and establishes this compartment are poorly understood. The parasite is separated from the host cell by a unique electron-dense structure of unknown composition. We have used indirect immunofluorescence microscopy and confocal laser scanning microscopy to characterize this structure. These studies indicate that host filamentous actin is assembled into a plaque-like structure at the host-parasite interface during parasite invasion and persists during parasite development. The actin-binding protein alpha-actinin is also present in this plaque early in parasite development but is lost as the parasite matures. Other actin-associated proteins, including vinculin, talin, and ezrin, are not present. We have found no evidence of tyrosine phosphorylation within this structure. Molecules known to link actin filaments to membrane were also examined, including alpha-catenin, beta-catenin, plakoglobin, and zyxin, but none was identified at the host-parasite junction. Thus, Cryptosporidium induces rearrangement of the host cell cytoskeleton and incorporates host cell actin and alpha-actinin into a host-parasite junctional complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.