Abstract

We study the following natural question: Which cryptographic primitives (if any) can be realized by functions with constant input locality, namely functions in which every bit of the input influences only a constant number of bits of the output? This continues the study of cryptography in low complexity classes. It was recently shown (Applebaum et al., FOCS 2004) that, under standard cryptographic assumptions, most cryptographic primitives can be realized by functions with constant output locality, namely ones in which every bit of the output is influenced by a constant number of bits from the input. We (almost) characterize what cryptographic tasks can be performed with constant input locality. On the negative side, we show that primitives which require some form of non-malleability (such as digital signatures, message authentication, or non-malleable encryption) cannot be realized with constant input locality. On the positive side, assuming the intractability of certain problems from the domain of error correcting codes (namely, hardness of decoding a random linear code or the security of the McEliece cryptosystem), we obtain new constructions of one-way functions, pseudorandom generators, commitments, and semantically-secure public-key encryption schemes whose input locality is constant. Moreover, these constructions also enjoy constant output locality. Therefore, they give rise to cryptographic hardware that has constant-depth, constant fan-in and constant fan-out. As a byproduct, we obtain a pseudorandom generator whose output and input locality are both optimal (namely, 3).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.