Abstract

The IEEE 802.15.4 standard for low-power radio communications defines techniques for the encryption of layer 2 network frames but does not discuss methods for the establishment of encryption keys. The constrained nature of wireless sensor devices poses many challenges to the process of key establishment. In this paper, we investigate whether any of the existing key exchange techniques developed for traditional, application-centric wireless sensor networks (WSN) are applicable and viable for IPv6 over Low power Wireless Personal Area Networks (6LoWPANs). We use Elliptic Curve Cryptography (ECC) to implement and apply the Elliptic Curve Diffie Hellman (ECDH) key exchange algorithm and we build a mechanism for generating, storing and managing secret keys. The mechanism has been implemented for the Contiki open source embedded operating system. We use the Cooja simulator to investigate a simple network consisting of two sensor nodes in order to identify the characteristics of the ECDH technique. We also simulate a larger network to examine the solution’s performance and scalability. Based on those results, we draw our conclusions, highlight open issues and suggest further work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.