Abstract

ABSTRACT Medical images of patients are often exchanged among specialist physicians, radiologists, hospital authorities and patients for remote monitoring and assessment as part of telemedicine. With the revolutions in the technology, the threat models and attackers are evolving on a daily basis and hence there is a constant need for the development of novel schemes that can protect personal information. In this paper, a non-blind fragile watermarking is developed to invisibly hide and integrate patient’s unique information such as biometrics in their radiological images for secure authentication, integrity verification and tamper detection purposes. The concept of compressive sensing theory is employed with discrete cosine transform to improve confidentiality. The performance of the proposed scheme is tested and evaluated on three types of medical images: X-ray, computed tomography and magnetic resonance imaging. The proposed scheme presents a means of verifying data integrity when medical images are subjected to attacks. The experimental results showed that the scheme invisibly hides high payloads of patient’s unique identities, apart from providing better tamper detection. The simulation results show that the proposed scheme provides high imperceptibility up to 92 dB and high payload capacity of up to 1 bpp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.