Abstract

Monitoring zooplankton communities is important to understand dynamics in marine ecosystems. However, it is difficult to identify cryptic species and immature stages of zooplankton using morphological classification, which is time-consuming and requires high skill levels. Here, we conducted a metagenetic analysis of the 18S region in 101 zooplankton samples collected weekly throughout 2014 and 2015 at the Okhotsk Tower in Mombetsu, Hokkaido, Japan, and compared the results of this analysis with those provided by morphological analysis. The metagenetic analysis detected 561 molecular taxonomic units (MOTUs), whereas the morphological analysis detected 201 taxonomic groups. Zooplankton communities were dominated by copepods throughout the sampling period; however, non-copepod taxa, which comprised high proportions of both MOTUs (mean 51.1%) and sequence reads (mean 19.1%), were also important. Cryptic diversity detected by the metagenetic analysis was primarily driven by Copepoda and by the larvae of benthic taxa such as Bivalvia, Gastropoda, and Polychaeta. Community structure and diversity varied between periods of warm and cold water, indicating strong correlations with water temperature and thus seasonality. Furthermore, metagenetic analysis revealed detailed seasonal changes in dominant taxa, including larval stages of metazoans with high taxonomic resolutions; these included commercially important organisms such as Japanese scallops. The metagenetic analysis revealed that changes in both water mass and bentho-pelagic interactions sustain ecosystems rich in zooplankton diversity in this area. Metagenetic analysis provides novel insight into zooplankton diversity, and generates massive sequence data that may be used in future research; thus, it is considered an effective tool for monitoring zooplankton communities.

Highlights

  • Marine zooplankton comprise an abundant and diverse group including ∼7,000 described species in 15 phyla (Bucklin et al, 2010)

  • Because this study focused on metazoan zooplankton, only sequence reads identified as “Metazoa” with a threshold >70% were selected for further analysis

  • Metagenetic analysis revealed a higher diversity of zooplankton taxa than those revealed by morphological analysis

Read more

Summary

Introduction

Marine zooplankton comprise an abundant and diverse group including ∼7,000 described species in 15 phyla (Bucklin et al, 2010). Changes in the distribution of ecologically important copepod species have been observed in large-scale spatial and temporal surveys of zooplankton, which in turn affect the recruitment of Atlantic cod in the North Atlantic (Beaugrand et al, 2003). Such changes in distribution are difficult to predict, as zooplankton distribution patterns are species-specific, and different species have different environmental preferences. To mitigate this difficulty, and to track changes in marine ecosystems in response to rapid climate and environmental changes, techniques must be developed that facilitate the monitoring of zooplankton communities at high taxonomic resolutions

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.