Abstract

The Penikat Layered Intrusion is located in northern Finland, about 70 km to the south of the Arctic Circle. It belongs to a discontinuous layered intrusion belt about 300 km in length and about 2440 m.y. old which stretches from the Swedish-Finnish border to Russian Karelia. The Penikat Intrusion itself is 23 km long and 1.5 to 3.5 km wide. Its magmatic stratigraphy may be divided into a thin marginal series and a 2 to 3 km thick layered series. The latter is made up to five megacyclic units (MCU) which are attributed to repeated influxes of new magma into the Penikat chamber during solidification. The intrusion hosts at least seven PGE-enriched zones, the most remarkable of which are the SJ, AP and PV PGE Reefs. The SJ Reef is located at the boundary between MCU's III and IV, about 600 m above the base of the intrusion; the AP Reef in the lower part of MCU IV, about 300 m above the SJ Reef; and the PV Reef in the transition zone between MCU's IV and V, about 800 m above the AP Reef. The Penikat Intrusion underwent complex deformation and metamorphism during the Svecokarelian Orogeny, resulting in variable alteration of most of the magmatic minerals. Augite is the least altered magmatic mineral and was, therefore, selected to indicate changing composition during fractionation and the manner in which its composition reflects the existence of megacyclic units. Augite occurs as an intercumulus mineral in the ultramafic lower part and as a cumulus mineral in the gabbronoritic and anorthositic upper part of each megacyclic unit. The 100 Mg/(Mg + Fe2 + Mn) ratio shows decreasing trends in the three lower-most megacyclic units, excluding the lower part of MCU II, where a considerable reversal occurs, i.e. this ratio indicates progressive increase upward in the stratigraphy, providing evidence of magma mixing. The ratio decreases abruptly at the base of MCU and remains relatively constant in MCU's IV and V. The variation in the Cr2O3 content resembles that of the 100 Mg/(Mg + Fe2+ + Mn), and clearly indicates differences between the three lowermost chromium-rich and the two uppermost chromium-poor megacyclic units. The variations in TiO2 and MnO content form roughly mirror images with chromium, being lower in the lower part and higher in the upper part of the intrusion. Na2O correlates positively with chromium, since Na− provides a charge balance to Cr3+ in augite. Besides the megacyclic units, the Penikat Intrusion is characterized by an unusually great number of PGE-enriched zones, even though the total thickness of the intrusion is only about three kilometers unlike the Bushveld and Stillwater Complexes which are much thicker. It is suggested that the presence of these kinds of PGE zones in layered intrusions, which comprise similar megacyclic units, is linked to the multistage processes which are also related to the development of these units and take place within them. Thus the identification of these kinds of megacyclic units may serve as a useful tool in prospecting for PGE ores both here and in other layered intrusions. This investigation reveals that the well-known method of studying cryptic variation in ferromagnesian silicates, such as augite, clearly indicates the existence of megacyclic units even in fairly altered layered intrusions like the Penikat.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.