Abstract

We identified cryptic early blight resistance introgressions in tomato breeding lines and demonstrated efficient genotypic selection for resistance in the context of a tomato breeding program. Early blight is a widespread and problematic disease affecting tomatoes (Solanum lycopersicum). Caused by the fungal pathogen Alternaria linariae (syn. A. tomatophila), symptoms include lesions on tomato stems, fruit, and foliage, often resulting in yield losses. Breeding tomatoes with genetic resistance would enhance production sustainability. Using cross-market breeding populations, we identified several quantitative trait loci (QTL) associated with early blight resistance. Early blight resistance putatively derived from 'Campbell 1943' was confirmed in modern fresh market tomato breeding lines. This resistance offered substantial protection against early blight stem lesions (collar rot) and moderate protection from defoliation. A distinctive and potentially novel form of early blight foliar resistance was discovered in a processing tomato breeding line and is probably derived from S. pimpinellifolium via 'Hawaii 7998'. Additional field trials validated the three most promising large-effect QTL, EB-1.2, EB-5, and EB-9. Resistance effects for EB-5 and EB-9 were consistent across breeding populations and environments, while EB-1.2's effect was population specific. Using genome-wide marker-assisted backcrossing, we developed fresh market tomato lines that were near-isogenic for early blight QTL. Resistance in these lines was largely mediated by just two QTL, EB-5 and EB-9, that together captured 49.0 and 68.7% of the defoliation and stem lesion variance, respectively. Our work showcases the value of mining cryptic introgressions in tomato lines, and across market classes, for use as additional sources of disease resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call