Abstract
With the great demand for europium in green-energy technologies comes the need for innovative methods to isolate the elements. We introduce a solid-liquid extraction method using a 2.2.2-cryptand-modified solid support to separate europium from gadolinium using their differences in electrochemical potential. The method overcomes challenges associated with the separation of those two ions that have similar coordination chemistry in the +3 oxidation state. A competitive adsorption study in the cryptand system between EuII/EuIII and GdIII shows greater affinity for EuII relative to GdIII. After separation from GdIII, Eu was released by oxidizing EuII to EuIII with 99.3% purity. The purity of separated Eu is unaffected by pH between pH 3.0 and 5.5. Overall, we demonstrate that by modifying a solid support with 2.2.2-cryptand, divalent europium can be separated from trivalent gadolinium based on the differences of affinities of 2.2.2-cryptand for the two ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.