Abstract

In response to various cryptanalysis results on white-box cryptography, Bringer et al. presented a novel white-box strategy. They propose to extend the round computations of a block cipher with a set of random equations and perturbations, and complicate the analysis by implementing each such round as one system that is obfuscated with annihilating linear input and output encodings. The improved version presented by Bringer et al. implements the AEw/oS, which is an AES version with key-dependent S-boxes (the S-boxes are in fact the secret key). In this paper we present an algebraic analysis to recover equivalent keys from the implementation. We show how the perturbations and system of random equations can be distinguished from the implementation, and how the linear input and output encodings can be eliminated. The result is that we have decomposed the white-box implementation into a much more simple, functionally equivalent implementation and retrieved a set of keys that are equivalent to the original key. Our cryptanalysis has a worst time complexity of 217 and a negligible space complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.