Abstract

Certificateless proxy signcryption (CLPSc) is one of the most efficient security primitives for secure data transmission. The entrustment of signing rights to a proxy signcrypter at the behest of an original signcrypter imparts its utility in various fields such as an online proxy auction, healthcare industry, cloud computing, mobile-agents, ubiquitous computing, etc. Unlike the traditional sign-then-encrypt approach, signcryption primitive saves computational costs and bandwidth load. Recently, a pairing-free CLPSc scheme has been proposed which claims to be secure against forgery under adaptive chosen-message attacks. This paper unveils that the aforementioned scheme has failed to provide unforgeability. As an improvement of their scheme, a novel pairing-free certificateless proxy signcryption scheme using elliptic curve cryptography (ECC) has been proposed for e-prescription system in mobile cloud computing. The proposed scheme is proven to be secure against indistinguishability under adaptive chosen-ciphertext attack and existential forgery under adaptive chosen-message attack in the random oracle model against Type 1 and Type 2 adversaries through formal analysis. The proposed scheme outperforms the existing schemes in terms of computational efficiency making it suitable for futuristic mobile cloud computing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.