Abstract

Understanding of electronic energy transition (EET) mechanisms from the light-harvesting unit to the reaction center in a natural system has been limited by (a) the use of conventional transient time-resolved spectroscopy at room temperature, which result in high signal-to-noise ratio and (b) examining extracts instead of intact light-harvesting units. Here, we report previously unknown differences and new insight in EET of two cyanobacteria species, Acaryochloris marina and Thermosynechoccocus vulcanus, which have been found only after using UV-vis, hole-burning, and fluorescence spectroscopy at ultralow temperature and examining their intact light-harvesting unit, phycobilisomes (PBS). Although the exciton formation is similarly induced by photoexcitation of chromophore assemblies in phycocyanin (PC) and allophycocyanin (APC) in PBSs of both species, the EET mechanisms are totally different, being adiabatic in A. marina and nonadiabatic in T. vulcanus. The PBS of A. marina has only one APC trimer and energy transfer is through coupling of α84 in APC with β84 in adjacent PC. In T. vulcanus, the PBS has three components: coupling between APC core and the entire PC rod and couplings of β-β18 and of LCM to β in the adjacent APC-like trimer. A total of 80% of the excitation energy is trapped in the coupling β-β18 and regulates the flow of energy from the high- to low-level terminal electronic transition emitter β-LCM. All these details cannot be observed at room temperature and in extracted units.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.