Abstract

Electron microscopic immunolabelling of ultrathin thawed cryo-sections, according to the method of Tokuyasu, is widely used as a very sensitive high-resolution localization technique. Its main advantages are that antigens remain in a hydrated environment prior to immunolabelling, and that antigen accessibility is improved compared with resin section labelling. However, the quality of structural appearance and antigenicity depends highly on the limitations of the initial conventional chemical fixation step, such as slow diffusion and selective reaction/cross-linking of fixative molecules. Cryofixation, instead of conventional chemical fixation, followed by freeze-substitution/chemical fixation, rehydration and further processing for Tokuyasu cryo-sectioning leads to an improved preservation of both ultrastructure and antigenicity. This is especially true for tissues which are difficult to preserve by conventional chemical fixation at ambient temperatures, such as plant material, Drosophila embryos or nematode tissue. In particular labile and highly dynamic structures (for example, microtubules and Golgi apparatus) are remarkably better preserved. These improvements are also valid for light microscopic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.