Abstract
Extensive studies have been conducted on deicing nanomaterials to improve the cryoprotective effects on cells, tissues, and organs. The nanomaterials with different composition, sizes, and shapes can inhibit the formation and growth of ice crystals, thereby reducing the damage to the cryopreserved samples. In this study, the carbon composite particles (CCPs) with different sizes and shapes were prepared by the hydrothermal method. The results demonstrated that the cryoprotective effect of CCPs enhanced with the decrease in particle size. Compared with spherical CCPs, Janus nanoparticles and WSP nanoflower with special shapes demonstrated improved protective effects on cryopreserved cells. In addition, the combination of deicing micro/nanomaterials at appropriate concentrations with commercial cryoprotectants exerted improved cryoprotective effects on cells. The prepared deicing micro/nanomaterials can improve cell cryopreservation, demonstrating great application potential in biomedical research and cryopreservation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Sheng wu gong cheng xue bao = Chinese journal of biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.