Abstract
Preserving the spermatogonial stem cells (SSCs) in long periods of time during the treatment of male infertility using stem cell banking systems and transplantation is an important issue. Therefore, this study was conducted to develop an optimal cryopreservation protocol for SSCs using 10mM pentoxifylline (PTX) as an antioxidant in basal freezing medium. Testicular torsion-a mouse model for long-term infertility-was used to transplant fresh SSCs (n = 6), fresh SSCs treated with PTX (n = 6), cryopreserved SSCs with basal freezing medium (n = 6), and cryopreserved SSCs treated with PTX (n = 6). Eight weeks after germ cell transplantation, samples were assessed for proliferation, through evaluation of Ddx4 and Id4 markers, and differentiation via evaluation of C-Kit and Sycp3, Tnp1, Tnp2, and Prm1 markers. According to morphological and flow cytometry results, SSCs are able to form colonies and express Gfra1, Id4, α6-integrin, and β1-integrin markers. We found positive influence from PTX on proliferative and differentiative markers in SSCs transplanted to azoospermic mice. In the recipient testis, donor SSCs formed spermatogenic colonies and sperm. Respecting these data, adding pentoxifylline is a practical way to precisely cryopreserve germ cells enriched for SSCs in cryopreservation, and this procedure could become an efficient method to restore fertility in a clinical setup. However, more studies are needed to ensure its safety in the long term.
Highlights
Considerable number of childhood cancer survivors are at risk of infertility due to the loss of spermatogenic cells after treatment[1]
We found positive influence from PTX on proliferative and differentiative markers in spermatogonial stem cells (SSCs) transplanted to azoospermic mice
Donor SSCs formed spermatogenic colonies and sperm. Respecting these data, adding pentoxifylline is a practical way to precisely cryopreserve germ cells enriched for SSCs in cryopreservation, and this procedure could become an efficient method to restore fertility in a clinical setup
Summary
Preserving the spermatogonial stem cells (SSCs) in long periods of time during the treatment of male infertility using stem cell banking systems and transplantation is an important issue. This study was conducted to develop an optimal cryopreservation protocol for SSCs using 10 mM pentoxifylline (PTX) as an antioxidant in basal freezing medium
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.