Abstract

Cryopreservation protocols have been successfully developed for hundreds of species and thousands of genotypes in laboratories around the world. In many of the protocols, the rewarming process occurs in a rewarming solution (RS) with a high concentration of sucrose (0.8–1.2 M). Warming rate and associated conditions influence cell rehydration, loss of accumulated solutes (e.g. cryoprotectants) and recrystallization of small ice crystals in the nuclei. The need for, and effect of, high sucrose concentrations in the RS post-thawing regrowth rate after liquid nitrogen exposure was assessed in the range of 0.0-1.2 M sucrose with a set of 16 potato landraces cryopreserved with the PVS2-droplet vitrification method. The results showed no significant difference for the average recovery rate (81–87%) between sucrose concentrations of 0.3 M to 1.2 M. Fourteen of 16 accessions had their highest recovery rate with sucrose concentrations between 0.3 and 0.9 M. The experimental results were subsequently extended to a genetically diverse set of 85 potato accessions (nine taxa), which demonstrated significantly higher recovery rates of 55–61% with RS sucrose concentrations of 0.3–0.9 M, compared to the sucrose concentrations of 0.0 M (37%) and 1.2 M (44%). Only one of 85 accessions showed its highest recovery rate with the routinely used RS sucrose concentration of 1.2 M. Of all the concentrations tested, 0.6 M sucrose appeared to be the best bet in terms of recovery rates across the genotypes; therefore, our routine protocol has been changed from 1.2 M sucrose to 0.6 M. The specific response to low (0.0 M) and high RS sucrose concentrations (1.2 M) was highly variable within species/subspecies and appears to be genotype specific. Thus, caution should be taken in generalizing experimental cryopreservation results obtained with a limited number of accessions to larger germplasm collections.

Highlights

  • Sucrose-rich rewarming solutions (RS) are widely used for reducing osmotic shock during rapid rewarming of cryopreserved plant tissues and organs, or for diluting out harmful cryoprotectants after rewarming in warm water baths

  • The objective of the present study was to evaluate the effect of five different sucrose concentrations in the rewarming solution (RS) on the recovery rate of 16 potato landraces cryopreserved with the Plant Vitrification Solution 2 (PVS2)-droplet vitrification method, and assess the results with a genetically diverse set of 85 potato accessions, including 82% of CIP’s mini-core potato collection

  • In an experiment with 16 clonal potato accessions, the use of RS sucrose concentrations of 0.6 M and 0.9 M showed on average ~ 5% higher recovery rate, compared to the routinely used 1.2 M sucrose concentration, suggesting that sucrose can be decreased in RS

Read more

Summary

Introduction

Sucrose-rich rewarming solutions (RS) are widely used for reducing osmotic shock during rapid rewarming of cryopreserved plant tissues and organs, or for diluting out harmful cryoprotectants after rewarming in warm water baths. Potato shoot tips have been successfully cryopreserved with different cryopreservation methods Sakai 1999; Yamamoto et al 2012; Vollmer et al 2016), but little information is available regarding the effect of the RS sucrose concentration on the recovery rate of cryopreserved potato shoot tips. The objective of the present study was to evaluate the effect of five different sucrose concentrations in the rewarming solution (RS) on the recovery rate of 16 potato landraces cryopreserved with the PVS2-droplet vitrification method, and assess the results with a genetically diverse set of 85 potato accessions, including 82% of CIP’s mini-core potato collection The objective of the present study was to evaluate the effect of five different sucrose concentrations in the rewarming solution (RS) on the recovery rate of 16 potato landraces cryopreserved with the PVS2-droplet vitrification method, and assess the results with a genetically diverse set of 85 potato accessions, including 82% of CIP’s mini-core potato collection (http://genebank.cipotato. org/gringlobal/methodaccession.aspx)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call