Abstract

Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25–30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine.

Highlights

  • Mesenchymal stem cells (MSCs) have been isolated from a variety of fetal and adult tissues and considered as an ideal candidate source for cell-based therapy due to their unique properties such as multipotency and immunomodulatory functions [1]

  • Dental pulp tissues were removed from exfoliated deciduous teeth and frozen in the freezing medium (10% dimethyl sulfoxide (DMSO) and 90% fetal bovine serum (FBS)) at 280uC overnight followed by the preservation in a liquid nitrogen-filled tank for over 2 years (Figure S1)

  • MSC markers STRO1 and CD146-positive cells were detected at the perivascular area (Figure 1B) as dental pulp stem cells (DPSCs) were localized around the blood vessels in adult dental pulp tissues [21]

Read more

Summary

Introduction

Mesenchymal stem cells (MSCs) have been isolated from a variety of fetal and adult tissues and considered as an ideal candidate source for cell-based therapy due to their unique properties such as multipotency and immunomodulatory functions [1]. MSCs exert striking regulatory effects on immune cells such as T- and B-lymphocytes, dendritic cells and natural killer cells [4,5]. This immunological traits of MSCs lead to take clinical advantages to immune diseases such as acute graft-versus-host-disease (GVHD) [4,6], hematopoietic stem cell (HSC) engraftment [7,8] and systemic lupus erythematosus (SLE) [9]. SHED are considered to be a feasible and promising cell source for cell-based tissue engineering and immune therapy in regenerative medicine

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.