Abstract
We cryopreserved whole rice calli (Oryza sativa L cv Taipei 309) to investigate the ability of the surviving cells to regenerate plants and yield protoplasts competent for genetic transformation. Four out of six callus lines cryopreserved after four months in culture contained small sectors able to continue cell division and subsequently regenerate fertile plants. Both cryopreservation efficiency and regeneration ability decreased when using eight month old cultures. High yields of protoplasts were obtained from different cryopreserved callus lines. Protoplasts were transfected with chimeric genes consisting of the maize ubiquitin 1 promoter, first exon and first intron fused to the coding region of either the GUS or BAR marker genes. Levels of transient gene expression from both marker genes were similar to those previously obtained using protoplasts derived from callus that had not been frozen. Stable transformants were selected by their resistance to Bialaphos and could be identified with the pH indicator chlorophenol red. Southern blot analysis confirmed the integration of the BAR gene into the rice genome. Therefore, cryopreservation does not affect the ability of rice cells to integrate and express foreign genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.