Abstract

Direct comparisons of synaptic functional parameters in brain tissues from different groups of experimental animals and different samples from post mortem human brain are often hindered by the inability to perform assays at the same time. To circumvent these difficulties we developed methods for cryopreservation and long-term storage of neocortical synaptosomes. The synaptosomes are suspended in a cryopreservation medium containing 10% dimethylsulfoxide and 10% fetal bovine serum, and are slowly cooled to −80°C and then stored in liquid nitrogen. The function of plasma membrane glucose and glutamate transporters, and mitochondrial electron transport activity and membrane potential were measured in fresh, cryopreserved (CP), and non-cryopreserved freeze–thawed (NC) synaptosomes. Glucose and glutamate transporter activities, and mitochondrial functional parameters in CP synaptosomes were essentially identical to those in fresh unfrozen synaptosomes. Glucose and glutamate transport were severely compromised in NC synaptosomes, whereas mitochondrial function and cellular esterase activity were largely maintained. Electron paramagnetic resonance studies in conjunction with a protein-specific spin label indicated that cryopreservation did not alter the physical state of synaptosomal membrane proteins. These methods provide the opportunity to generate stocks of functional synaptosomes from different experiments or post mortem samples collected over large time intervals. Themes: Excitable membranes and synaptic transmission Topics: Presynaptic mechanisms

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call