Abstract

We investigated the feasibility of cryopreservation of spermatogonia and oogonia in the critically endangered cyprinid honmoroko Gnathopogon caerulescens using slow-cooling (freezing) and rapid-cooling (vitrification) methods. Initially, we examined the testicular cell toxicities and glass-forming properties of the five cryoprotectants: ethylene glycol (EG), glycerol (GC), dimethyl sulfoxide (DMSO), propylene glycol (PG), and 1,3-butylene glycol (BG), and we determined cryoprotectant concentrations that are suitable for freezing and vitrification solutions, respectively. Subsequently, we prepared the freezing solutions of EG, GC, DMSO, PG, and BG at 3, 2, 3, 2, and 2M and vitrification solutions at 7, 6, 5, 5, and 4M, respectively. Following the cryopreservation of the testicular cells mainly containing early-stage spermatogenic cells (e.g., spermatogonia and primary spermatocytes), cells were cultured for 7days and immunochemically stained against germ cell marker protein Vasa. Areas occupied by Vasa-positive cells indicated that vitrification led to better survival of germ cells than the freezing method, and the best result was obtained with 5M PG, about 50% recovery of germ cells following vitrification. In the case of ovarian cells containing oogonia and stage I, II, and IIIa oocytes, vitrification with 5M DMSO resulted the best survival of oogonia, with equivalent cell numbers to those cultured without vitrification. The present data suggest that male and female gonial cells of the endangered species G. caerulescens can be efficiently cryopreserved using suitable cryoprotectants for spermatogonia and oogonia, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call